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Testing a Class of Methods for Solving Minimization 
Problems with Simple Bounds on the Variables 

By Andrew R. Conn,* Nicholas I. M. Gould, and Philippe L. Toint 

Abstract. We describe the results of a series of tests for a class of new methods of trust 
region type for solving the simple bound constrained minimization problem. The results 
are encouraging and lead us to believe that the methods will prove useful in solving 
large-scale problems. 

1. Introduction. We are concerned with solving the simple bound constrained 
minimization problem 

minimize f (x) 
(1.1) xERn 

subject to the simple bounds 1 < x < u 

by a method of the trust region type. In this problem, f(x) is assumed to be 
sufficiently smooth, 1 and u are fixed vectors and the inequalities are taken compo- 
nentwise. 

Such problems arise quite naturally in a number of different circumstances. In- 
deed, some authors (see Gill, Murray and Wright [14]) maintain that the variables 
for the vast majority of optimization problems can only be considered meaning- 
ful within specific intervals and consequently should be solved with simple bound 
constraints. 

Many algorithms for solving (1.1) have been proposed. Early methods were of 
the active set variety in which a sequence of problems are solved. In these methods 
a subset of the variables (the active set) are fixed at bounds and the objective func- 
tion minimized with respect to the remaining variables. Such algorithms typically 
use line searches to force convergence, and both direct (Fletcher and Jackson [10], 
Gill and Murray [12]) and iterative (O'Leary [21]) methods have been suggested for 
solving the linear systems which arise during each iteration. A significant drawback 
of such methods for large-scale problems appears to be that the active sets can only 
change slowly, and many iterations are necessary to correct for a bad initial choice. 
More recently, methods which allow a rapid change of the active set to occur have 
been proposed (Bertsekas [1], Dembo and Tulowitzki [7]); these methods perform 
line searches along a search direction which is 'bent' to keep the iterates within the 
feasible region. Although a convergence theory for such methods can be given for 
convex problems, it is not obvious how to adapt the theory to more general prob- 
lems. Alternatively, rapid changes in the active set are possible if sufficient effort 
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is expended in computing the search direction at each iteration. For instance, if 
the search direction subproblem is one of minimizing a suitable quadratic model 
subject to appropriate bounds on the components of the direction, the combina- 
torial problem of deciding which variables lie on bounds may be relegated to the 
subproblem. The success of such methods is thus dependent on being able to solve 
the resulting subproblems efficiently, the subproblem of course being a special case 
of (1.1). Line-search methods based on this idea may be formulated as special cases 
of sequential quadratic programming methods; see, for example, Garcia-Palomares 
[11] or Gill et al. [13]. We know of no experience with this class of method. 

In this paper we propose a new algorithm for which we have already produced 
a general convergence theory (Conn, Gould and Toint [3]) and which allows rapid 
changes in the active set. At each iteration of the algorithm, we define a (quadratic) 
approximation to the objective function and a region surrounding the current it- 
erate in which we believe this approximation to be adequate. The algorithm then 
finds a feasible candidate for the next iterate in this region. This candidate is 
chosen so as to give a sufficient reduction in the value of the (quadratic) model 
of the objective function. If the function value calculated at this point matches 
its predicted value closely enough, the new point is accepted as the next iterate 
and the trust region is possibly enlarged; otherwise, the point is rejected and the 
trust region size decreased. We stress that under no circumstances is a line search 
performed to try to improve upon this new point. 

A particularly attractive aspect of the algorithm proposed is that, by generaliz- 
ing the standard notion of a Cauchy point to accommodate the bound constraints, 
in what seems to us a natural manner, one is able to extend the very general known 
convergence results for trust region methods applied to unconstrained problems (see 
More [18]). Moreover, the framework presented is well suited to large-dimensional 
problems and can be used in conjunction with partitioned secant updating tech- 
niques on the general class of partially separable problems (Griewank and Toint 
[15], [16]). However, the issues involved in solving large-scale problems are by no 
means trivial, and the design of sophisticated software for such problems is a major 
task that we postpone for a future paper. The purpose of the current work is to 
demonstrate the viability of the methods proposed (and whose convergence is stud- 
ied) in our previous paper. Consequently, the numerical results presented below 
are for small dense problems the largest containing 45 variables. 

The paper is organized as follows. In Section 2 we give a general introduction 
to the framework of our algorithms and we discuss the issues involved in deter- 
mining our generalization of the Cauchy point in Section 3. The specific algorithm 
used in our tests is then given in Section 4. In Section 5, details of our testing 
and the numerical results obtained are presented. They include a comparison of 
various possible choices in the context of the considered algorithmic class and also 
a comparison with existing quality software for the same problem. Both of these 
comparisons yield unexpected results that are commented on. Finally, a general 
discussion of some of the directions for future research follows in Section 6. A 
detailed list of the test problems that we have used is given in an appendix. 

2. The Basic Algorithm. As we have already stated, our algorithm is essen- 
tially of the model-trust region variety. The description we give here is a special 
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case of the more general framework presented by Conn, Gould and Toint [3]. We 
need to define the following concepts. The set of all points x for which 1 < x < u 
is the feasible region for the problem (1.1) and any point x in the feasible region is 
feasible. Let a and b be any two vectors for which a < b. The active set with respect 
to the vectors a and b at the point x, I(x, a, b), is the index set {i for which xi < ai 
or xi > bi (or both)}. In particular, we shall refer to I(x, 1, u) as the active set at x 
and denote it by I(x). We now define the projection operator P[H] (componentwise) 
by 

J ai if xi < ai, 
P[x,a,b]i= bi if xi > bi, 

xi otherwise. 
For brevity we shall write P[x] = P[x, 1, u] and will refer to P[x] as the projection 
of x onto the feasible region. 

At the kth stage of the algorithm, we suppose that we have a feasible point x(k), 
the gradient, g(k) , of f (x) at x(k) and a suitable symmetric approximation B(k) to 
the Hessian matrix of the objective function at this point. Furthermore, we require 
a scalar A(k) which represents a bound upon displacements around x(k) within 
which we believe that a second-order approximation, 

(2.1) m(k)(X(k) + s) -f(x(k)) + g(k)Ts + 1sTB(k)s, 

to the objective function will effectively agree with the true function. A trial point 
y(k+l) = x(k) + s(k) is constructed by finding an approximation to the solution of 
the trust region problem 

minimize m(k) (x) 
XERn 

(2.2) subject to the simple bounds I < x < u 
and the trust region constraint Ix - X(k) < A(k), 

where is a suitably chosen norm. The acceptance of the trial point as an 
improvement and the modification of A(k) are treated in essentially the same way 
as in trust region methods for unconstrained problems (see More [18]). That is, 
we compute the ratio of the achieved to the predicted reduction of the objective 
function, 

(2.3) p(k) (f(X(k)) - f(X(k) + s(k)))/(f(X(k)) _ m(k)(X(k) +S(k))) 

and set x(k) + s(k) if p(k) > 
p, 

{ 
x(k) if p(k) < p, 

and 

J PyoA(k) if p(k) < 

(2.4) A(k+l) A (k) if P < p(k) < , 

1y2 A(k) if p(k) > 7 

where -yo < 1 < 1Y2, p and 77 are appropriate numbers. It remains to describe our 
approximate solution of (2.2). 

It is convenient to attempt to solve (2.2) in the case where we choose the infinity 
norm for the trust region constraint. For then the shape of the trust region is 
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aligned with the simple bounds (see, for example, Fletcher [9]). Thus, we replace 
the constraints in (2.2) by the "box" constraints 

(2.5) max(I X~k) _ A(k)) 1(k) < xi < U(k) -min(ui, x(k) + Aik()) 

for i = 1,... , n. In order to satisfy our global convergence theory, we need only find 
a feasible point within the trust region at which the value of the model function is 
no larger than its value at the Generalized Cauchy Point (GCP) (see Conn, Gould 
and Toint [3]). The GCP is defined as the first local minimizer of the univariate 
function 

(2.6) q(k) (t) = m(k) (P[x(k) - tg(k),I(k), u(k)]). 

That is, the first local minimizer of the model function, along the piecewise linear arc 
defined by projecting the steepest descent direction onto the region (2.5). We note 
that this definition is slightly different from that given by Conn, Gould and Toint 
[3], where the Generalized Cauchy Point is defined to be the first local minimizer 
of 

m(k)(p[X(k) _ tg(k) I u]) 

within the true. region. The old definition forces the line minimization to cease 
at the first )omnt at which the trust region boundary is encountered; in our new 
definition, farther progress is possible along the boundary of the trust region pro- 
vided that the quadratic model continues to decrease. Our existing theory covers 
the new definition, as the new GCP gives a lower model function value than the old 
GCP and the active set at the new point is no smaller than at the old point. The 
calculation of the GCP may be performed extremely efficiently as we shall shortly 
show. We note that the combinatorial part of our algorithm (the determination of 
which variables are to be fixed at one of their bounds during the current iteration) 
takes place in finding the GCP. This computation allows us to add and drop many 
bounds from the active set during a single iteration, if this is desirable. As we have 
already remarked, this is important for large-scale problems. 

In order to induce a fast asymptotic rate of convergence of the method, we 
normally require a better approximation to the minimizer of (2.2) than the GCP. 
Consequently, we suppose that the GCP is X(k)c and that the active set with respect 
to l(k) and u(k) at X(k)c is I(X(k)c,I(k) U(k)). We now apply the conjugate gradient 
algorithm, starting from x = X(k)c, to the problem 

(2.7) minimize m(k) (x), 
xERn 

with the restriction that the variables in the set I(x(k)c, I(k), u(k)) remain fixed 
throughout the process. 

Under a strict complementary slackness assumption, the strategy described 
above is sufficient to ensure that the set of constraints active at the solution (the 
correct active set) is identified after a finite number of iterations (see Conn, Gould 
and Toint [3]). The convergence of the algorithm can thereafter be analyzed as that 
of a purely unconstrained method. The conjugate gradient algorithm is terminated 
at the point x if 

(i) the norm of the restricted gradient of the model function, that is the vector 
whose components are those elements of the gradient of m(k) (x) at x = x 
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whose indices are not contained in I(x(k)c, I1(k),U(k)), is less than 77(k) for 
some 7(k); 

(ii) one or more of the unrestricted variables violates one of the bounds (2.5) 
(x is then the point at which the offending bound(s) is encountered); or 

(iii) an excessive number of iterations has been taken. 

In all cases, the final point reached is the new trial point, i.e., y(k+1) = Y. The rule 
(i) has already been considered by Toint [29] and Steihaug [27] for unconstrained 
minimization algorithms and is known to be useful for large-scale computations. 
Rule (ii) has three purposes. The first is to provide a natural stopping rule in the 
event that nonpositive curvature is encountered for the model. The second is to 
maintain feasibility of the iterates. The last is to avoid the expense of restarting 
the conjugate gradient iteration when a bound is encountered. 

Once the correct active set has been determined, the asymptotic rate of con- 
vergence of the method will be controlled by the accuracy to which we attempt to 
solve (2.7). A superlinear rate of convergence can be assured provided that (a) the 
ratio of the norm of the restricted gradient at the final point to that at x(k) tends 
to zero as the iterates approach a Kuhn-Tucker point for the problem and (b) the 
matrices B(k) approach the true second derivative matrix at the solution in the 
direction that x(k) approaches the solution (see Dembo, Eisenstat and Steihaug [6], 
Dennis and Schnabel, [8]). A suitable choice for 7(k) in order to satisfy (a) is given 
by 

(2.8) 77(k) = min (0.1 II I 
gk)II g(k) I I 

where g(k) is the projected gradiern, p[X(k) - g(k)] - X(k), at x(k). The property (b) 
is certainly true if exact second derivatives are computed; the situation for secant 
updating formulae is closely related to that given by Steihaug [27]. In this case we 
must be careful that our updates obey the condition 

(2.9) I / I1+ 0m~ax 1 B( ) ||J =00o 
k=0 

required in our global convergence theory. Such a condition is satisfied if, for 
instance, 

(2.10) IIB(k)I I< c1 + kc2 

for some positive constants c1 and c2. 

3. The Generalized Cauchy Point. In order to find the Generalized Cauchy 
Point, we need to be able to determine the first local minimizer of a quadratic func- 
tion along a piecewise linear arc. In this section we describe an efficient algorithm 
for this calculation. 

We shall consider a piecewise linear arc of the form 

(3.1) x(t) = xz + d(t), where d(t)i = 
td i 

otheris 
tjt di otherwise, 

where the breakpoints 0 = to < t1 < ...< tin and the indices 0 < j, < m are well 
defined and may be calculated as required. We shall adopt the convention that 
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ji = 0 if di = 0 and note that d(t) is independent of t for all t > t,. Notice that 
the arc 

P[x(k) - tg(k), (k), U(k)] 

is exactly of this form, a breakpoint occurring whenever a variable reaches one of 
its bounds. 

Our method for finding the GCP is simply to consider the intervals [tj, tj+1] in 
order of increasing j until the one containing the GCP is located. We need only 
calculate tj+1 when the first j intervals have been examined and rejected. In order 
to calculate the GCP, we shall be concerned with the behavior of the quadratic 
function 

(3.2) m(x) = f + (x - Xo)Tg + 1 (x - x)TB(x - x) 

for points lying on (3.1). In particular, we shall be concerned with its behavior 
between adjacent pairs of breakpoints. If we define xi = x(tj), we can express (3.1) 
in the interval [tj, tJ+1 ] as 

(3.3) z (t) = xi + At di, where dj = 
di if j > Jil 

l wr 0 otherwise, 

and At = t - tj. Hence, defining 

fj = f + gTzj + lzZjTBzJ f' gTdj + djTBzi and f=' dijTBdi, 

where zi = x-ix, and combining (3.2) and (3.3), we obtain 

m(x(t)) = fj + Atfj + 1 At2f7 

for all t = tj + At in the interval [tj, tj+1]. It is then straightforward to deduce that 
the GCP lies at tj - f/f' provided that this point lies in the interval (tj, tj+1) 
and that fj' > 0, lies at t1 if fj > 0 and lies at or beyond tj+1 in all other cases. 
We need now only be concerned with calculating fj and f'. 

Let Jj = {i such that ji = j}. Then 

di = di- 1 - die' 
iEJ3 

where et is the ith column of the identity matrix. We may then obtain the identities 

f = fj- + Atj_ 1fq1 _-bjTXi- Z di g 
iEJ.1 

(3.4) and ( 
f"= f" + bT diei - 2d1) 

iEJj 

where g =g-Bx? Atj_1 = tj-tj_1 and 

(3.5) b = B di ei)= di(Be). 
iEJj iEJ3 

Notice that the recurrences (3.4) require a single matrix-vector product (3.5) and 
two vector inner products. Moreover, the matrix-vector product only involves 
columns of B indexed by J1; as it is usual for Ij I to be small (typically 1), the 
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product can normally be formed very efficiently. In the worst case, when we have 
to run through all of the breakpoints to find the GCP, each column of B will be 
accessed once. The recurrences are initialized with the values 

fo = gTdO and fog = dOTBdo. 

4. The Specific Algorithm. We are now in a position to specify our algo- 
rithm in almost its entirety. The only part that we do not give here is how the 
second derivative approximations B(k) are formed and updated. Details of these 
calculations are given in Section 5. 

STEP 0 [Initialization] 
The feasible starting point x(?), the function value f (x(?)) and the gradient value 

9(?) are given, as well as an initial trust region radius, AM?, and B(?), an initial 
symmetric approximation to the Hessian matrix of f(x) at the starting point. 
The positive constants ^Yo < 1 < '2, C1, C2, AM, , and e are specified. Set k = 0. 

STEP 1 [Test for convergence] 
Compute the projected gradient 9(k) = p[X(k) _ g(k)] _ X(k). If jp(k)jj < e, 

STOP. 
STEP 2 [Find the GCP] 

Calculate the bounds l(k) and u(k) from Eq. (2.5). Find the Generalized Cauchy 
Point, X(k)c (using the algorithm outlined in Section 3) as follows: 
STEP 2.0 [Initialization] 

Set 
- X(k) x = 

g = g(k) - B(k)_(k), 

d =lim P[xk)t()1,u-k, 
t +0+ 

f= g(k)T d 

and f" = dTB(k)d 

If f' > 0, go to STEP 2.4. 
STEP 2.1. [Find the next breakpoint] 

Find the largest stepsize At for which 1(k) < x + At d < U(k) and the index 
set J of the indices of all the variables which first encounter their bounds at 
x + Atd. 

STEP 2.2 [Test whether the GCP has been found] 
If ff" > 0 and 0 < -(fl/f") < At, reset x := x - (f'/f")d and go to STEP 
2.4. 

STEP 2.3. [Update line derivatives] 
Compute b = B(k) (lies diei) and reset 

x:=x+Atd and 

f := f + Atf" - bTx digi, 
iEJ 

fI := f/ + bT (z die' - 2d), 
iEJ 

di 0 for all i E J. 



406 ANDREW R. CONN, NICHOLAS I. M. GOULD, AND PHILIPPE L. TOINT 

If f' > 0, go to STEP 2.4. Otherwise, go to STEP 2.1. 
STEP 2.4 [Termination with GCP] 

Set X(k)c = x. 
STEP 3 [Find the new iterate] 

Compute the active set I(X(k)c,l(k),U(k)). 

Apply the following variant of the conjugate gradient algorithm to find an ap- 
proximation x(k) to the minimizer of the model function (2.1) over the feasible 
region (2.2) with the additional restriction that the variables with indices in 

I(X(k)C,(k),U(k)) remain fixed at the corresponding values of x(k)c: 

STEP 3.0 [Initialization] 
Set x = x(k)c and r = _g(k) - B(k)(X - X(k)). Compute ?(k) from Eq. (2.8). 
Set 

I = {1, 2,.. ., n}\I(x(k)c, I(k), u(k)). 

Let x, i, i and fi denote the vectors whose components are those of x, r, 1(k) 

and u(k) indexed by I. Furthermore, let B denote the matrix whose rows and 
columns are those of B(k) indexed by I. Set P = 0, P1 = 1 and P2 = iTi. 

STEP 3.1 [Test for the required accuracy in c.g. iteration] 
If P2 < (?(k))2, go to STEP 3.3. 

STEP 3.2 [Conjugate gradient recurrences] 
Set /B = P2/P1 and reset P := i + lp. Compute = ]3p and find a,, the 
largest value of a for which I < x + cap < &. 
If p1T < 0, reset x := x + caP and go to STEP 3.3. 
Otherwise, calculate a2 = P2/pTY 

If a2 > a,, reset x : + ailp and go to STEP 3.3. 
Otherwise, reset 

x =x+ at2P 
r := r- a2Y, 

P1 P2 

and p2:=JTi. 

Return to STEP 3.1. 
STEP 3.3 [Termination of conjugate gradient iteration] 

Reset the components of x indexed by I to the values of the associated com- 
ponents of x. Set X(k+l) = x. 

STEP 4 [Compute the ratio of achieved to predicted reduction in the function] 
Compute f(y(k+1)) and 

P(k) 
- 

(f (X(k)) _ f (X(k+l)))/(m(k) (X(k)) -f (x(k+l))). 

STEP 5 [Updates] 
Set k = (k+l) if p(k) > j 

i x(k) if p(k) < 

set A(k+1) according to Eq. (2.4) and compute 

g(k+l) | g(x(k+l)) if p(k) > II, 
9 g(k) if p(k) < t 
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Revise the approximation to the second derivative approximation B(k+l) while 
ensuring that Eq. (2.10) is maintained. Increment k by 1 and return to STEP 
1. 

5. Numerical Experiments. In order to investigate the behavior of the al- 
gorithm stated in Section 4, we have performed a substantial amount of numerical 
testing. We have attempted to solve forty six test problems using an assortment 
of methods, including existing library software for the problem and our algorithm. 
In testing our algorithm, we have allowed a variety of schemes for approximating 
second derivative information; we stress that this is the only way in which the 
alternative implementations of our algorithm'differ from each other. The aim is 
naturally to indicate that our framework is an effective one for solving relatively 
small problems; our belief is that these tests give some indication as to how our 
methods could cope with larger problems. 

We start with the various implementations of our algorithm. As has been stated, 
we have computed the second derivative matrices B(k) in a number of different ways. 
We refer the reader to Gill, Murray and Wright [14, Section 4.5.2.1] for a definition 
of the methods and terminology of this section. 

First, we have tried using the exact second derivatives; this was intended to allow 
a comparison of other schemes with the ideal updating formula. Second, we have 
included the B.F.G.S., 

B(k+l) = B(k) + y(k)y(k)T B(k)s(k)s(k)TB(k) 

y(k)TS(k) - (k)TB(k) 8(k) 

and D.F.P., 

B(k+l) B(k) r(k)y(k)T + y(k)r(k)T r(k)TS(k)y(k)y(k)T 
y(k)TS(k) (y(k)TS(k))2 

updating schemes. Here S(k) and y(k) are, respectively, the step x(k+l) -x(k) and 
the change in gradient g(k+l) _ g(k), and r(k) = y(k) - B(k)S(k). In both cases, the 
update is only performed if the new approximation can be ensured to be positive 
definite. To be precise, the updates are only performed when the condition 

(5.1) p(k)T8(k)1/(k)TY(k) > 10-8 

is satisfied. We note that the B.F.G.S. (but not the D.F.P.) update has the property 
that the updates remain uniformly bounded (see Powell [23], Griewank and Toint 
[16]) for convex problems and hence automatically satisfy the growth requirement 
(2.10) in this case. Third, we have included the P.S.B. update, 

B(k+l) B(k) + r(k)s(k)T + s(k)r(k)T r(k)Ts(k)s(k)s(k)T 
8(k)T8(k) (S(k)T8(k))2 

as an example of a scheme that allows indefinite approximations to be generated 
and for which no effort needs be made to ensure that the growth requirement (2.10) 
is satisfied. Finally, we have tried the Symmetric Rank-one update, 

(k+ 1) (k) +r (k) r(k) T 
B = B 

~~r(k)TS(k)' 

as an example of an update which allows indefinite approximations but which must 
be controlled so that the growth requirement (2.10) is satisfied. We choose to skip 
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the update whenever the rank-one correction is too large. For simplicity, we have 
chosen to skip the update when the correction has norm larger than 108. In theory, 
this value, and the value 10-8 in the inequality (5.1), are arbitrary, but in practice 
it will almost certainly be better to chose the values to reflect problem scalings. 

For each of these second-derivative schemes, we solved every test problem twice. 
For the first run, the problem is essentially unconstrained (U) but we have taken 
the precaution of including the simple bounds 

-100.0 < xi < 100.0, 1 < i < n, 

to prevent an unbounded solution being found. For a few of the problems, typi- 
cally those containing exponential, we have provided tighter bounds in order to 
prevent numerical overflow when the problem functions are evaluated notice that 
our framework is especially useful for imposing such safeguards. Details of these 
additional bounds are given in the Appendix. If x* denotes the solution obtained 
for problem U, the second test of the problem (C) includes the additional bounds 

Xt + 0.1 < xi < xt + 1.1 for all odd i. 

The starting point for the constrained problem is the projection onto the feasible 
region, P[x(0)], of the starting point for the unconstrained problem. Details of the 
test problems and their solutions are given in the appendix. 

All computations were performed on the IBM 3084Q computer at Harwell; our 
code is written in Double Precision Fortran 77 (with modifications as required by 
WATFIV) and compiled using the WATFIV Fortran compiler. All timings reported 
are in seconds for time spent in the c.p.u. and appear to be correct to about one 
hundredth of a second. As the code is essentially a prototype for studying the 
effectiveness of the method, we did not feel it necessary to use a more sophisticated 
optimizing compiler; the timings quoted are supposed to allow comparisons of the 
relative merits of the schemes tested rather than trying to obtain the "best" timing 
for a particular scheme. The initial estimate BO0) = I was used for all of the 
updating schemes; the initial trust region radius was taken to be A(?) = 0.111I(O)112. 
We also chose ,u = 0.25, r7 = 0.75, -oo = 0.5 and -y = 2. 

The results of the tests using our algorithm are given in Tables 5.1-5.5 and 
summarized in Tables 5.6-5.8. For each run we have given the number of variables 
(n), the number of iterations (it.) required to solve the problem (which is the same 
as the number of objective function evaluations), the total number of derivative 
evaluations (de.) (which is the same as the number of iterations for which the 
trial point is accepted), the total number of conjugate gradient iterations taken 
(c.g.), the norm of the projected gradient (gr. norm) at the final point, the last 
iteration on which the active set changes (cas) (which is an indication as to when 
the correct active set is obtained for successful runs) and the time taken to reach 
the final point (time). Additionally, for the B.F.G.S., D.F.P. and S.R.1 runs, we 
have recorded the number of times the second derivative update was skipped (usk). 
Every run was terminated if the norm of the projected gradient of the objective 
function was reduced below 10-6. In addition, each unconstrained [constrained] 
run was terminated if more than max(20n, 600) [max(lOn, 300)] iterations were 
performed or if the trust region radius i\(k) was reduced below 10-16, and these 
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failures are indicated by > in the iteration column. In Table 5.6, the performance 
of the updating schemes is compared with that obtained by the method which uses 
exact second derivative information. The relative number of iterations and the 
relative timings are given and indicate how much worse the respective updating 
schemes are than the use of exact second derivatives. In Tables 5.7 and 5.8, the 
methods are ranked according to the numbers of iterations and the c.p.u. times 
taken for each test problem. For each problem, the five methods are ranked from 
1 (fewest iterations or shortest time) to 5 (most iterations or longest time), with 
failures being recorded separately. The table entries give the sums of these rankings 
over all the test problems. For instance, the method using the D.F.P. update ranks 
third for 19 of the test problems when the ranking is based upon the number of 
iterations taken. 

As a comparison, we include results obtained on the same set of test problems 
when existing library software for solving (1.1) is used. The codes in question 
appear in the NAG subroutine library at mark 11 (1984) and are based upon 
earlier codes developed for the NPL optimization library (Gill and Murray [12]). 
The NAG algorithms are line-search and active-set based (see, for example, Gill, 
Murray and Wright [14]); we use routines E04LAF, a modified Newton method, and 
E04KAF, a quasi-Newton method based upon the B.F.G.S. update. Both routines 
perform derivative line searches and choose "tuning" parameters by default. The 
termination of the methods is controlled by specifying the accuracy required in the 
approximation to the solution x*; we requested that x* be computed correctly to 
five decimal places. The codes are written in Fortran 77, precompiled, and the 
tests were, once again, performed on the Harwell IBM 3084Q. The result of this 
testing is summarized in Table 5.9. 'For each problem and both algorithms we 
give the number of iterations required to solve the problem (it.), the number of 
function/gradient evaluations made (a function/gradient pair is required at every 
trial point by the line-search routine) (fde.) and the norm of the projected gradient 
(gr. norm) at the final point encountered. Quantitatively similar results for the 
unconstrained problems were also obtained from the Harwell subroutine VA13AD, 
a B.F.G.S. based line-search method, but are not reported here. 

We now consider the conclusions that can be drawn from our tests. We first 
compare the various versions of our algorithm and then consider our algorithm in 
comparison with the NAG routines. 

As one might expect, the use of exact second derivatives gives uniformly and 
significantly better results than the other approximating schemes both in terms 
of the number of iterations and in terms of the overall timings. Of course, none of 
the problems solved has particularly complicated derivatives, and the calculation of 
exact second derivatives is often cheaper than performing a rank-one or rank-two 
update to an existing approximation. Nonetheless, we believe that the use of second 
derivatives in our framework is worthwhile and we recommend their use whenever 
they are available. The worst performance occurs on the problem DEGENSING for 
which the complementary slackness condition does not hold at the solution. A closer 
examination of the run shows that the degenerate bounds repeatedly enter and leave 
the active set as the solution is approached (as is to be expected). The insistence 
on terminating the conjugate gradient (c.g.) iteration when a previously inactive 



410 ANDREW R. CONN, NICHOLAS I. M. GOULD, AND PHILIPPE L. TOINT 

TABLE 5. 1 

Results for tests using exact second derivatives 

Problem n it. de. I c.g. gr.norm 1cas time 

GENROSE U 8 42 31 184 2.2D-07 0 0.88 

GENROSE C 8 15 15 54 2.8D-10 6 0.27 

CHAINROSE U 25 20 17 98 1.3D-07 0 1.80 

CHAINROSE C 25 18 13 26 3.9D-07 14 0.91 

DEGENROSE U 25 95 94 34 6.3D-07 95 5.64 

DEGENROSE C 25 17 14 13 1.2D-10 12 0.78 

GENSING U 20 10 11 37 5.6D-07 0 0.58 

GENSING C 20 4 5 3 1.6D-07 0 0.15 

CHAINSING U 20 18 19 96 4.6D-07 0 1.21 

CHAINSING C 20 3 4 8 2.5D-15 0 0.13 

DEGENSING U 20 155 156 56 3.0D-07 148 6.45 

DEGENSING C 20 3 4 8 2.5D-15 1 0.13 

GENWOOD U 8 107 75 393 2.6D-10 0 2.03 

GENWOOD C 8 5 6 2 1.0D-07 0 0.07 

CHAINWOOD U 8 77 54 365 2.4D-09 0 1.64 

CHAINWOOD C 8 5 6 7 7.8D-07 0 0.07 

HOSC45 U 10 19 20 0 0.0D-01 19 0.26 

HOSC45 C 10 12 13 0 0.0D)-1 12 0.18 

BROYDENA U 30 11 12 38 6.9D-07 0 1.13 

BROYDENIA C 30 8 9 10 3.5D-10 0 0.54 

BROYDEN1B U 30 7 8 31 6.3D-08 0 0.79 

BROYDEN1B C 30 6 7 5 3.3D-07 0 0.39 

BROYDEN2A U 30 14 15 7 5.6D-07 0 1.48 

BROYDEN2A C 30 10 11 11 1.8D-07 3 1.05 

BROYDEN2B U 30 9 10 12 7.OD-07 0 1.04 

BROYDEN2B C 30 9 10 9 6.5D-08 2 0.93 

TOINTBROY U 30 8 9 52 3.3D-07 0 1.10 

TOINTBROY C 30 8 9 8 2.2D-10 0 0.55 

TRIG U 10 7 6 7 1.6D-07 O 0.28 

TRIG C 10 8 8 6 8.8D-15 0 0.32 

TOINTTRIG U 10 13 9 26 9.6D-08 0 I 0.28 

TOINITRIG C 10 10 9 18 2.8D-13 3 0.19 

CRAGGLEVY U 8 24 25 106 4.4D-07 0 0.50 

CRAGGLEVY C 8 20 20 65 1.7D-07 19 0.36 

PENALTY U 15 27 25 58 2.OD-08 0 0.88 

PENALTY C 15 80 81 31 1.2D-08 78 2.12 

AUGMLAGN U 15 31 21 103 8.1D-07 8 1.15 

AUGMLAGN C 15 47 37 186 5.2D-08 44 1.77 

BROWNI U 20 27 28 32 9.4D-10 1 1.22 

BROWNI C 20 27 28 0 3.6D-10 1 0.93 

BROWN3 U 20 7 8 4 4.5D-08 0 0.31 

BROWN3 C 20 6 7 6 3.9D-07 0 0.24 

BVP(N=10)U 10 4 5 31 1.7D-09 0 0.14 

BVP(N=10) C 10 4 5 18 1.4D-07 3 0.10 

BVP(N=20) U 20 5 6 77 6.4D-10 0 0.63 

BVP(N=20) C 20 9 10 62 6.1D-07 8 0.67 

VAR(N=20) U 20 6 7 112 2.7D-09 0 0.87 

VAR(N=20) C 20 6 7 61 1.7D-09 3 0.53 

VAR(N=45) U 45 6 7 234 1.7D-07 0 5.35 

VAR(N=45) C _ 45 
_ 
12 13 90 i 1.8D-09 j9 3.10 
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TABLE 5. 2 
Results for tests using the B.F. G.S. update 

Problem n it. de. usk c.g. gr.norm cas time 

GENROSE U 8 149 98 0 376 5.9D-07 0 2.82 
GENROSE C 8 84 54 0 178 3.OD-08 49 1.33 
CHAINROSE U 25 190 129 0 376 6.7D-07 0 15.50 
CHAINROSE C 25 65 43 0 97 2.2D-07 16 4.10 
DEGENROSE U 25 240 210 0 65 7.6D-07 240 17.39 
DEGENROSE C 25 56 28 0 35 6.9D-07 22 2.75 
GENSING U 20 125 77 0 503 3.8D-07 0 8.35 
GENSING C 20 15 10 0 10 1.9D-07 12 0.58 
CHAINSING U 20 165 109 0 512 6.3D-07 0 10.44 
CHAINSING C 20 25 15 0 14 2.OD-08 0 0.93 
DEGENSING U 20 572 545 0 203 4.4D-07 572 29.74 
DEGENSING C 20 21 13 0 16 1.1D-07 7 0.77 
GENWOOD U 8 201 136 0 720 6.5D-08 0 3.99 
GENWOOD C 8 50 23 0 27 1.2D-07 21 0.59 
CHAINWOOD U 8 221 148 0 894 4.9D-07 0 4.67 
CHAINWOOD C 8 47 25 0 40 2.4D-08 22 0.61 
HOSC45 U 10 >600 601 600 0 2.3D-04 0 7.57 
HOSC45 C 10 86 87 86 0 0.0D--01 86 1.07 
BROYDEN1A U 30 65 44 0 218 8.4D-07 0 7.68 
BROYDEN1A C 30 54 23 0 17 4.1D-07 13 3.70 
BROYDEN1B U 30 97 62 0 44 5.4D-07 0 8.78 
BROYDENIB C 30 65 31 0 30 3.3D-07 0 4.46 
BROYDEN2A U 30 71 36 0 183 8.8D-07 0 7.66 
BROYDEN2A C 30 65 I 29 0 18 1.9D-07 18 5.15 
BROYDEN2B U 30 69 34 0 14 2.3D-07 0 6.29 
BROYDEN2B C 30 67 29 0 25 4.2D-07 12 5.06 
TOINTBROY U 30 122 80 01 76 7.5D-07 0 11.54 
TOINTBROY C 30 68 34 01 29 3.8D-07 10 4.89 
TRIG U 10 45 21 0 46 5.4D-07 0 1.09 
TRIG C 10 17 11 0 13 3.3D-07 0 0.37 
TOINTTRIG U 10 73 37 0 65 9.3D-07 0 1.50 
TOINTTRIG C 10 57 25 0 51 1.3D-07 7 0.86 
CRAGGLEVY U 8 99 83 0 574 6.3D-07 0 2.38 
CRAGGLEVY C 8 63 56 0 151 7.6D-07 56 1.10 
PENALTY U 15 139 104 2 537 7.OD-07 0 6.28 
PENALTY C 15 74 59 0 156 1.7D-07 61 2.63 
AUGMLAGN U 15 156 112 1 355 4.5D-07 41 5.83 
AUGMLAGN C 15 139 98 0 306 9.7D-07 131 5.03 
BROWNI U 20 94 54 3 159 2.9D-07 8 4.68 
BROWN1 C 20 33 29 3 0 9.OD-07 6 1.21 
BROWN3U 20 18 15 0 28 5.1D-07 0 0.94 
BROWN3C 20 9 9 0 1 3 7.3D-07 0 0.41 
BVP(N= 10) U 10 31 27 0 109 6.1D-07 0 0.80 
BVP(N=10) C 10 33 23 0 82 2.4D-08 20 0.70 
BVP(N=20) U 20 69 56 0 438 6.1D-07 0 5.67 
BVP(N=20) C 20 611 47 0 277 1.8D-07 37 4.09 
VAR(N=20) U 20 134 97 0 390 1.7D-07 0 8.35 
VAR(N=20) C 20 128 86 0 267 1.9D-07 88 7.09 
VAR(N=45) U 45 366 259 0 1252 5.9D-07 0 85.94 
VAR(N=45) C 45 337 i 234 0 i 772 i 8.3D-07 i 279 i 69.54 
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TABLE 5.3 

Results for tests using the D.F.P. update 

Problem n it. de. usk c.g. gr.norm cas time 

GENROSE U 8 >600 589 0 1154 4.7D 00 0 10.96 

GENROSE C 8 39 31 0 99 5.4D-07 18 0.67 

CHAINROSE U 25 95 70 0 410 7.1D-07 0 9.39 

CHAINROSE C 25 45 30 0 47 4.OD-07 11 2.80 

DEGENROSE U 25 183 164 0 202 9.4D-07 183 14.18 
DEGENROSE C 25 47 20 0 43 2.6D-07 10 2.27 
GENSING U 20 76 61 0 338 9.4D-07 0 5.30 
GENSING C 20 14 10 0 8 3.OD-07 12 0.58 
CHAINSING U 20 253 230 0 1635 4.4D-07 0 21.04 
CHAINSING C 20 17 12 0 13 9.6D-07 0 0.69 
DEGENSING U 20 >600 594 0 9 8.OD-03 601 32.08 
DEGENSING C 20 19 12 0 13 1.7D-09 7 0.71 
GENWOOD U 8 >600 587 92 1824 1.9D 00 0 11.46 
GENWOOD C 8 28 16 0 10 1.7D-08 16 0.34 
CHAINWOOD U 8 >600 590 0 1904 1.4D-01 0 12.10 
CHAINWOOD C 8 30 18 0 24 1.7D-08 24 0.42 
HOSC45 U 10 >600 601 600 0 2.3D-04 0 7.55 
HOSC45 C 10 86 87 86 0 0.OD-01 86 1.07 

BROYDEN1A U 30 96 69 0 819 9.5D-07 0 16.51 

BROYDEN1A C 30 59 24 0 52 1.8D-07 13 4.11 

BROYDEN1B U 30 65 36 0 62 6.OD-07 0 5.91 

BROYDEN1B C 30 52 20 0 44 3.4D-07 0 3.49 

BROYDEN2A U 30 83 51 0 432 9.3D-07 0 11.17 

BROYDEN2A C 30 69 32 0 124 9.3D-08 14 5.69 

BROYDEN2B U 30 66 26 0 69 4.9D-07 0 5.75 

BROYDEN2B C 30 65 29 0 95 9.7D-07 12 5.07 

TOINTBROY U 30 77 44 0 108 9.9D-07 0 7.41 

TOINTBROY C 30 56 26 0 53 7.7D-07 10 4.03 

TRIG U 10 28 16 0 20 6.1D-07 0 0.71 

TRIG C 10 15 10 0 101 1.2D-07 3 0.34 

TOINTTRIG U 10 41 24 0 71 1.7D-07 0 0.91 

TOINTTRIG C 10 26 15 ! ? 30 4.OD-()7 7 0.44 

CRAGGLEVY U 8 >600 592 0 2387 1.1D-04 0 12.70 

CRAGGLEVY C 8 193 189 0 237 9.3D-07 170 3.06 

PENALTY U 15 >600 572 1 2971 8.6D-01 0 30.19 

PENALTY C 15 157 142 0 588 8.3D-07 63 5.78 

AUGMLAGN U 15 >600 586 0 1346 3.6D-01 395 24.73 

AUGMLAGN C 15 >300 291 0 998 2.5D-01 297 12.12 

BROWN1 U 20 >600 565 3 2717 1.3D-04 8 41.86 

BROWN1 C 20 33 29 3 0 9.OD-07 6 1.19 

BROWN3U 20 15 12 0 18 8.1D-07 0 0.75 

BROWN3 C '20 9 9 0 11 7.OD-07 0 0.41 

BVP(N=10) U 10 47 45 0 252 3.6D-08 0 1.41 

BVP(N=10) C 10 25 22 0 83 1.4D-07 12 0.59 

BVP(N=20) U 20 269 264 0 2645 8.5D-07 0 27.07 
BVP(N=20) C 20 107 97 0 734 2.7D-07 30 8.46 
VAR(N=20) U 20 56 43 0 226 1.6D-07 0 3.82 
VAR(N=20) C 20 54 40 0 185 8.6D-08 21 3.40 

VAR(N=45) U 45 130 99 0 695 1.5D-07 0 35.54 

VAR(N=45) C j45j 153 127 0 1 600 9.3D-071 1361 36.88 
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TABLE 5.4 
Results for tests using the P.S.B. update 

Problem n it. de. c.g. gr.norm cas time 

GENROSE U 8 177 125 581 2.2D-07 0 3.62 
GENROSE C 8 96 67 196 2.0D-07 42 1.52 

CHAINROSE U 25 137 96 323 8.1D-07 0 12.21 
CHAINROSE C 25 52 36 75 3.9D-07 12 3.17 

DEGENROSE U 25 233 212 23 6.4D-07 233 17.08 
DEGENROSE C 25 42 20 39 8.1D-08 10 2.01 
GENSING U 20 171 132 387 8.4D-07 0 10.21 
GENSING C 20 14 9 7 8.7D-07 9 0.51 
CHAINSING U 20 217 173 1745 5.1D-07 0 19.91 
CHAINSING C 20 24 14 21 5.2D-07 0 0.88 
DEGENSING U 20 >600 559 547 5.4D-05 601 31.50 
DEGENSING C 20 19 12 12 2.4D-09 7 0.68 
GENWOOD U 8 296 230 1143 5.7D-07 0 6.19 
GENWOOD C 8 32 15 19 2.8D-08 13 0.36 
CHAINWOOD U 8 279 204 1099 9.2D-07 0 5.97 
CHAINWOOD C 8 31 20 21 5.4D-09 23 0.44 
HOSC45 U 10 29 30 0 0.0D-01 29 0.50 
HOSC45 C 10 15 16 4 0.0D-01 15 0.28 
BROYDEN1A U 30 172 143 1905 9.9D-07 0 34.55 

BROYDEN1A C 30 60 28 58 5.7D-07 13 4.10 

BROYDEN1B U 30 87 50 96 8.8D-07 0 8.23 

BROYDEN1B C 30 57 23 42 1.1D-07 0 3.67 
BROYDEN2A U 30 111 68 595 9.8D-07 0 15.22 
BROYDEN2A C 30 69 37 60 7.4D-07 18 5.44 

BROYDEN2B U 30 68 28 48 3.4D-07 0 5.88 
BROYDEN2B C 30 62 26 69 7.1D-07 16 4.68 

TOINTBROY U 30 99 59 112 5.9D-07 0 9.72 

TOINTBROY C 30 54 23 28 9.7D-07 14 3.74 

TRIG U 10 31 19 27 3.3D-07 0 0.79 

TRIG C 101 16 101 11 9.6D-08 3 0.35 

TOINTTRIG U 101 35 23 45 6.0D-08 0 0.78 
TOINTTRIG C 10 22 14 21 3.3D-07 7 0.38 

CRAGGLEVY U 8 454 422 2967 9.3D-07 0 11.82 

CRAGGLEVY C 8 250 240 651 1.01-06 186 4.14 
PENALTY U 15 566 514 2886 9.6D-07 0 28.96 
PENALTYC 15 >300 261 159 1.1D00 109 8.96 

AUGMLAGN U 15 549 493 4498 1.OD-06 24 33.26 

AUGMLAGNC 15 127 103 315 8.1D-08 116 4.77 

BROWN1 U 20 >600 539 7570 8.6D-04 528 69.40 

BROWN1 C 20 41 37 0 5.3D-07 6 1.47 

BROWN3 U 20 21 13 29 3.4D-08 0 0.99 

BROWN3 C 20 9 9 13 3.8D-07 0 0.40 

BVP(N=10) U 10 34 26 114 6.SD-07 0 0.86 

BVP(N=10) C 10 38 27 92 4.9D-07 19 0.81 

BVP(N=20) U 20 113 82 983 5.6D-07 0 10.62 

BVP(N=20) C 20 131 88 867 1.6D-07 17 9.99 

VAR(N=20) U 20 119 85 470 5.SD-07 0 8.15 

VAR(N=20) C 20 102 72 353 9.3D-07 74 6.40 

VAR(N=45) U 45 271 194 1390 7.7D-07 0 77.81 

VAR(N=45) C j 4S 200! 157 619 1.1D-07 1168 47.60 
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TABLE 5.5 

Results for tests using the symmetric rank-one update 

Problem n it. de. usk c.g. gr.norm cas time 

GENROSE U 8 195 115 0 467 4.8D-07 0 3.39 

GENROSE C 8 70 37 0 118 8.8D-09 32 0.96 

CHAINROSE U 25 140 77 0 220 1.6D-07 0 10.47 

CHAINROSE C 25 39 23 0 55 4.OD-07 11 2.24 

DEGENROSE U 25 152 120 0 58 9.2D-08 152 10.17 

DEGENROSE C 25 34 16 0 22 1.0D-08 10 1.59 

GENSING U 20 74 46 0 247 6.OD-07 0 4.49 

GENSING C 20 12 8 0 7 2.3D-10 0 0.43 

CHAINSING U 20 83 58 0 445 8.7D-07 0 6.09 

CHAINSING C 20 14 9 0 9 7.1D-10 0 0.50 

DEGENSING U 20 >600 570 0 539 9.4D-04 77 28.69 

DEGENSING C 20 14 9 0 8 5.1D-09 7 0.48 

GENWOOD U 8 486 307 0 814 6.8D-07 0 7.72 

GENWOOD C 8 32 15 0 4 1.OD-07 28 0.37 

CHAINWOOD U 8 411 261 0 1148 1.1-10 0 7.57 

CHAINWOOD C 8 23 15 0 15 1.4D-09 16 0.29 

HOSC45 U 10 28 29 0 0 0.0D-01 28 0.45 

HOSC45 C 10 14 15 0 2 0.0D-01 14 0.25 

BROYDEN1A U 30 129 76 0 704 9.5D-07 0 17.46 

BROYDEN1A C 30 54 25 0 46 4.2D-08 13 3.63 

BROYDEN1B U 30 81 40 0 78 2.2D1{)7 0 7.33 

BROYDEN1B C 30 45 19 0 45 3.0D-07 0 2.82 

BROYDEN2A U 30 95 52 0 284 4.0D-07 0 10.47 

BROYDEN2A C 30 63 30 0 44 5.3D-07 25 5.04 

BROYDEN2B U 30 82 38 0 71 1.5D-07 0 7.68 

BROYDEN2B C 30 57 28 0 45 9.3D-07 12 4.35 

TOINTBROY U 30 62 36 0 119 4.2D-07 0 6.10 

TOINTBROY C 30 44 22 0 35 6.2D-07 19 3.25 

TRIG U 10 22 13 0 25 1.6D-08 0 0.55 

TRIG C 101 13 9 0 9 3.3D-09 0 0.28 

TOINTTRIG U 10 27 17 0 30 5.80-07 0 0.57 

TOINTTRIG C 10 20 12 0 19 1.9D-10 7 0.33 

CRAGGLEVY U 8 142 92 0 398 2.6D-07 0 2.54 

CRAGGLEVY C 8 56 48 0 182 3.2D-07 49 1.02 

PENALTY U 15 163 105 0 742 5.2D-08 0 7.45 

PENALTY C 15 91 71 0 126 4.9D-07 81 2.81 

AUGMLAGN U 15 125 92 0 313 4.4D-07 37 4.47 

AUGMLAGN C 15 97 72 0 240 2.1D-07 90 3.39 

BROWN1 U 20 110 88 4 164 3.4D-07 8 5.41 

BROWNI C 20 33 29 3 0 9.0D-07 6 1.08 

BROWN3 U 20 12 11 0 10 4.4D-09 0 0.54 

BROWN3 C 20 9 9 0 12 1.8D-07 0 0.37 

BVP(N=10) U 10 27 19 0 42 2.1D-08 0 0.54 

BVP(N=10) C 10 18 13 0 45 4.9I-08 12 0.36 

BVP(N=20) U 20 29 25 0 143 2.5D-07 0 2.01 

BVP(N=20) C 20 35 26 0 172 2.6D-07 24 2.26 

VAR(N=20) U 20 41 32 0 146 2.8D-08 0 2.52 

VAR(N=20) C 20 35 25 0 92 9.4D-08 19 1.92 

VAR(N=45) U 45 78 59 0 457 1.6D-08 0 22.21 

VAR(N=45)C_ 45 85 L 67 0j245j 9.2D-08 80_17.98 
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TABLE 5.6 
A comparison of the performance of the methods relative 

to the method using exact second derivatives 

it. time 

Problem BFGS DFP PSB SRi BFGS DFP PSB SRI 

GENROSE U 3.55 >14.29 4.21 4.64 3.14 >12.12 4.01 3.75 
GENROSE C 5.60 2.60 6.40 4.67 4.87 2.46 5.55 3.52 

CHAINROSE U 9.50 4.75 6.85 7.00 8.49 5.15 6.69 5.74 

CHAINROSE C 3.61 2.50 2.89 2.17 4.49 3.06 3.47 2.45 

DEGENROSE U 2.53 1.93 2.45 1.60 3.08 2.51 3.02 1.80 

DEGENROSE C 3.29 2.76 2.47 2.00 3.51 2.90 2.57 2.04 
GENSING U 12.50 7.60 17.10 7.40 13.78 8.75 16.83 7.42 

GENSING C 3.75 3.50 3.50 3.00 3.82 3.81 3.34 2.80 

CHAINSING U 9.17 14.06 12.06 4.61 8.48 17.08 16.16 4.95 
CHAINSING C 8.33 5.67 8.00 4.67 6.63 4.92 6.32 3.59 
DEGENSING U 3.69 >3.87 >3.87 >3.87 4.59 >4.95 >4.86 >4.43 
DEGENSING C 7.00 6.33 6.33 4.67 5.52 5.06 4.84 3.45 
GENWOOD U 1.88 > 5.61 2.77 4.54 1.95 > 5.59 3.02 3.76 
GENWOOD C 10.00 5.60 6.40 6.40 8.78 5.04 5.37 5.54 
CHAINWOOD U 2.87 > 7.79 3.62 5.34 2.83 > 7.31 3.61 4.57 
CHAINWOOD C 9.40 6.00 6.20 4.60 8.30 5.71 5.99 4.03 
HOSC45 U >31.58 >31.58 1.53 1.47 >26.58 >26.52 1.79 1.62 
HOSC45 C 7.17 7.17 1.25 1.17 5.83 5.87 1.57 1.36 
BROYDENIA U 5.91 8.73 15.64 11.73 6.62 14.22 29.74 15.04 

BROYDEN1A C 6.75 7.38 7.50 6.75 6.74 7.49 7.48 6.62 
BROYDEN1B U 13.86 9.29 12.43 11.57 10.70 7.21 10.02 8.93 
BROYDENIB C 10.83 8.67 9.50 7.50 11.06 8.66 9.12 7.00 
BROYDEN2A U 5.07 5.93 7.93 6.79 5.08 7.40 10.08 6.94 
BROYDEN2A C 6.50 6.90 6.90 6.30 4.84 5.35 5.12 4.74 
BROYDEN2B U 7.67 7.33 7.56 9.11 5.92 5.41 5153 7.22 
BROYDEN2B C 7.44 7.22 6.89 6.33 5.40 5.42 5.00 4.65 

TOINTBROY U 15.25 9.63 12.38 7.75 10.27 6.59 8.65 i 5.44 

TOINTBROY C 8.50 7.00 6.75 5.50 8.68 7.16 6.64 5.78 
TRIG U 6.43 4.00 4.43 3.14 3.65 2.38 2.64 1.86 

TRIG C 2.13 1.88 2.00 1.63 1.15 1.07 1.08 0.88 

TOINTTRIG U 5.62 3.15 2.69 2.08 5.09 3.10 2.67 1.97 

TOINTTRIG C 5.70 2.60 2.20 2.00 4.54 2.32 1.99 1.75 

CRAGGLEVY U 4.13 >25.00| 18.92 5.92 4.59 >24.36 22.68 4.89 

CRAGGLEVYC 3.15 9.65 12.50 2.80 3.03 8.41 11.38 2.80 

PENALTY U 5.15 >22.22 20.96 6.04 6.94 >33.34 31.98 8.24 

PENALTY C 0.92 1.96 > 3.75 1.14 1.24 2.72 > 4.21 1.32 

AUGMLAGN U 5.03 >19.35 17.71 4.03 4.97 >21.04 28.28 3.81 

AUGMLAGN C 2.96 > 6.38 2.70 2.06 2.83 > 6.82 2.68 1.91 

BROWNI U 3.48 >22.22 >22.22 4.07 3.79 >33.74 >55.94 1 4.37 

BROWN1 C 1.22 1.22 1.52 1.22 1.30 1.28 1.58 1.16 

BROWN3 U 2.57 2.14 3.00 1.71 2.89 2.32 3.05 1.68 

BROWN3C 1.50 1.50 1.50 1.50 1.71 1.70 1.63 1.54 

BVP(N= 10) U 7.75 11.75 8.50 6.75 4.98 8.70 5.30 3.39 
BVP(N=10) C 8.25 6.25 9.50 4.50 6.53 5.50 7.50 3.41 

BVP(N=20) U 13.80 53.80 22.60 5.80 8.64 41.16 16.16 1 3.07 

BVP(N=20) C 6.78 11.89 14.56 3.89 6.10 12.61 14.89 3.37 

VAR(N=20) U 22.33 9.33 19.83 6.83 9.38 4.30 9.16 2.84 

VAR(N=20)C 21.33 9.00 17.00 5.83 13.13 6.30 11.86 3.57 

VAR(N=45) U 61.00 21.67 j 45.17 13.00 16.06 6.70 13.94 3.98 

VAR(N=45) C 28.08 j 12.75 J 16.67 L 7.08 22.83 11.95 14.70 | 5.56 
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TABLE 5.7 
A ranking of the various update methods according 

to the number of iterations taken 

Ranking Exact B.F.G.S. D.F.P. P.S.B. S.R.1 

1st 49 1 0 0 0 

2nd 1 12 7 1 35 

3rd 01 7 19 16 7 

4th 1 0 1 7 11 20 6 

5th 0{ 22 3 10: 1 

Failure 0 1 10 3 1 

TABLE 5.8 
A ranking of the various update methods according 

to the time taken 

Ranking Exact B.F.G.S. D.F.P. P.S.B. S.R.1 

1st 49 0 0 0i 1 

2nd 1 10 5 0 34 

3rd 0 8 17 15 9 

4th 0 9 11 23 4 

5th 0 22 7 9 1 

Failure 0 1 10 3 1 

variable hits a bound slows down convergence in the presence of degenerate bounds, 
as it forces small steps to be taken. As stated in Section 3, the reasoning behind this 
termination criterion for the c.g. iteration is that for non dual degenerate problems 
the correct active set will eventually be found at the GCP and the c.g. iteration will 
thereafter be unhindered by the inactive bounds. As the c.g. scheme would have to 
be restarted every time a new bound is encountered (in order to restore conjugacy of 
the c.g. search directions) and as this could involve a lot of additional computation 
for large-scale problems, our termination criteria seemed reasonable. However, for 
this particular problem, the inactive degenerate bounds were all encountered during 
the first c.g. iteration, and there would be little overhead incurred in restarting 
the iteration under these conditions. The convergence theory of Conn, Gould and 
Toint [3] allows us to increase the active set in the c.g. iteration provided that it 
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always contains those variables active in the GCP. In Table 5.10, we indicate the 
improvements possible if we allow restarting within the conjugate gradient iteration 
for the DEGENSING (U) problem. 

Somewhat more surprisingly, the simplest of the updating schemes, the symmet- 
ric rank-one method, appears to perform the best compared with the other meth- 
ods in our tests. The use of a trust region removes the main disadvantage of such 
methods in allowing a meaningful step to be taken even when the approximation is 
indefinite. For large problems, it is desirable to allow indefinite approximations, as 
the combination of symmetric secant updating, positive definiteness and preserva- 
tion of the sparsity structure can lead to severe numerical difficulties (see Sorensen 
[26]). Of course, such a scheme must be used with care, but the restriction (2.10) 
seems to provide a useful stabilizing effect-we note, moreover, that the update was 
almost never skipped. The use of S.R.1 for larger problems is thus quite appealing 
in view of its relatively good overall performance and its simplicity. We suspect 
that the success of the method is due in part to our observation that, in contrast 
to the other updating schemes, the second derivative approximations with respect 
to the inactive variables at the solution converged (or were very close) to their 
true values on almost every problem tested. Such a result has been theoretically 
established, under very mild conditions, for quadratic functions (see, e.g. Fletcher 
[9, p. 41]) and would appear to be true in general. It is noticeable that three of the 
poorest results, relative to the exact second derivative method, are on the problems 
BROYDEN1A (U), BROYDEN2A (U) and PENALTY (U) for which the second 
derivative approximations obtained were observed to be less accurate than normal. 
We believe that this is important for trust region methods, which are essentially 
based on being able to model the true function as accurately as possible in a larger 
subspace than just that given by the Newton direction; accuracy in the latter sub- 
space is all that is really required for success in line-search algorithms. We have 
not tried to prove our conjecture here; we believe that such a result is likely to be 
rather difficult to establish and is a challenging and important open question. The 
fact that the minimization (2.7) is carried out inexactly may also be important in 
the appreciation of the performance of S.R.1. 

We should mention here that Brayton and Cullum [2] have suggested the use of 
the rank-one formula in the context of a line-search algorithm for solving (1.1); they 
make use of a number of ingenious techniques for avoiding numerical difficulties in 
their approach [5] and provide some evidence that their method is effective. Exactly 
how their method compares with other line-search based techniques, such as the 
NAG algorithms considered here, is not reported but would be of some interest. 

All of the updating methods failed on at least one problem. The method based 
upon the S.R.1 update failed on DEGENSING (U), but as we have already seen, 
this is caused by (dual) degeneracy of the solution and can be overcome (see Table 
5.10). Of the three other methods, the B.F.G.S. update appears to be the most 
reliable-indeed the only failure for this problem, on HOSC45, is attributable to 
our insistence on maintaining a positive definite approximation to a matrix which 
is uniformly indefinite. As has been observed in the past, the B.F.G.S. method is 
more robust than the D.F.P. Although B.F.G.S. performs well on some problems, 
the results are surprisingly disappointing in comparison with S.R.1, especially in 
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TABLE 5.9 
Results for the NAG routines EO4LAF/KAF 

E04LAF E04KAF 

Problem it. fde. gr.norm it. fde. gr.norm 

GENROSE U 25 43 2.7D-08 68 155 1.3D-07 

GENROSE C 13 64 2.9D-09 25 192 1.1D-06 

CHAINROSE U 13 25 7.2D-12 61 176 1.6D-07 

CHAINROSE C 14 56 2.7D-14 24 220 2.OD-07 

DEGENROSE U 14 24 7.1D-11 128 350 2.4D-07 

DEGENROSE C 12 47 2.9D-1l 19 383 8.5D-08 

GENSING U 18 25 6.3D-11 45 95 LID-11 

GENSING C 3 35 4.7D-15 7 108 1.4D-07 

CHAINSING U 24 31 1.2D-10 117 192 4.8D-11 

CHAINSING C 3 41 2.3D-15 8 209 2.4D-08 

DEGENSING U 24 33 1.4D-10 100 200 9.0D-08 

DEGENSING C 3 43 3.7D-11 8 218 4.9D-09 

GENWOOD U 42 70 3.6D-07 122 230 3.5D-08 

GENWOOD C 1 78 1.4D-13 6 242 1.0D-09 

CHAINWOOD U 37 53 6.0D-07 109 203 2.4D-07 

CHAINWOOD C 1 61 1.8D-13 18 229 1.7D-07 

HOSC45 U 8 16 0.0D+00 8 71 0.0D+00 

HOSC45 C 9 32 0.0D+00 9 95 0.0D+00 

BROYDEN1A U 13 20 1.3D-08 70 140 3.1D-07 

BROYDEN1A C 7 34 7.5D-09 22 186 1.lD-08 

BROYDENIB U 6 13 3.6D-08 40 103 8.7D-08 

BROYDENIB C 6 26 2.0D-09 19 143 1.9D-06 

BROYDEN2A U 15 22 4.6D-08 118 213 9.2D-07 

BROYDEN2A C 10 39 6.7D-09 37 287 2.3D-07 

BROYDEN2B U 8 15 2.3D-14 45 122 8.OD-07 

BROYDEN21B C 8 30 2.2D-09 31 191 5.9D-07 

TOINTBROY U 7 14 2.1D-12 80 176 9.OD-07 

TOINTBROY C 6 27 1.7D-12 36 234 4.2D-07 

TRIG U 4 11 3.1D 04 12 51 2.2D-08 

TRIG C 4 23 5.OD-05 11 70 1.3D-06 

TOINTTRIG U 7 17 3.6D-09 16 69 2.6D-06 

TOINTTRIG C 6 30 1.3D-13 11 97 2.5D-07 

CRAGGLEVY U 29 36 1.4D-10 109 206 6.7D-09 

CRAGGLEVY C 25 69 1.4D-11 65 284 7.4D-09 

PENALTY U 40 47 8.3D-09 248 357 5.6D-04 

PENALTY C 18 72 2.1D-08 132 516 6.6D-08 

AUGMLAGN U 15 24 3.7D-09 78 168 1.9D-07 

AUGMLAGN C 27 66 3.2D-13 81 275 1.lD-07 

BROWN1 U 49 56 4.SD-08 500 803 1.7D-09 

BROWNI C 28 911 3.4D-10 271 1109 5.6D-08 

BROWN3U 7 14 1.lD-17 16 49 4.OD-11 

BROWN3 C 6 27 6.7D-10 9 63 1.4D-08 

BVP(N= 10) U 3 10 2.4D-11 17 56 9.8D-10 

BVP(N= 10) C 7 24 5.6D-16 24 92 4.3D-08 

BVP(N-20) U 3 10 7.7D-14 41 87 2.5D-10 

BVP(N-20) C 8 25 1.7D-12 50 160 3.7D-08 

VAR(N=20) U 6 13 1.2D-08 29 78 3.8D-08 

VAR(N=20) C 9 29 2.9D-12 34 135 4.3D-08 

VAR(N=45) U 6 13 1.4D-11 55 134 1.1 D-07 

VAR(N=45) C 13 34 4.3D-12 87 L 277 { 1.3D-06 
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TABLE 5. 1 0 

Results for the DEGENSING (U, n = 20) problem with 
restarts allowed in the conjugate gradient iteration 

Hessian it. de. usk c.g. gr.norm cas time 

Exact 20 21 - 142 9.3D-07 9 2.68 

B.F.G.S. 104 78 0 531 5.2D-07 86 11.50 

D.F.P 203 189 0 1203 7.5 D-07 203 23.77 

P.S.B. 160 127 - 1033 6.8D-07 160 17.69 

S.R.1 85 64 0 459 4.2D-07 64 9.49 

view of the high esteem in which the scheme is held when used in conjunction with 
line-search methods (see Dennis and Schnabel [8], or any other modern textbook 
on numerical optimization). Indeed, the number of problems for which this update 
performs worst is alarmingly high. We note that there have been previous instances 
reported where the B.F.G.S. (and D.F.P.) method(s) perform rather poorly but the 
rank-one formula would prove highly efficient (see Powell [24]). The P.S.B. update 
appears to give more reliable results than the D.F.P. However, it seems somewhat 
surprising, in view of the relative success of the S.R.1 formula and our belief that 
part of this success is attributable to the convergence of the updates to the true sec- 
ond derivatives, that the P.S.B. formula performs so poorly. Under the same weak 
conditions that are needed to prove the convergence of the updates in the S.R.1 
case, the P.S.B. method should also generate convergent second-derivative approx- 
imations (see Powell [22]) but, in our experiments, this convergence often seems to 
be very slow-there are actually a couple of differences between the convergence re- 
sults for the two methods, namely that, as mentioned above, the convergence result 
is only known for S.R.1 in the case of quadratic functions, whereas for P.S.B. the 
result is for a much larger class of functions but the convergence is actually finite 
(i.e., it occurs in theory after a finite number of updates) in the quadratic case for 
S.R.1 but not P.S.B. The D.F.P. update is the most unreliable. It is interesting 
to observe that it often fails or performs poorly on problems for which B.F.G.S. is 
efficient. 

A number of different initial approximations BO0) have also been tried, including 
the use of the exact second derivatives (modified to be positive definite if necessary) 
and the suggestions of Shanno and Phua [25] and Dennis and Schnabel [8]. As was 
to be expected, such different initial approximations did not significantly alter the 
numerical results, since the problems cited are all reasonably well scaled. 

We now turn to the comparison of the new algorithm with the existing library 
routines. We believe that the important figures in such a comparison are the number 
of function and gradient calls required to solve the problem. For the new algorithm, 
there is one function evaluation per iteration (it.) and the number of gradient 
evaluations is given in the column headed (de.) in Tables 5.1-5.5. For the NAG 
routines, function and gradient evaluations occur in pairs and the number of such 
evaluations occurs in the column maked (fde.) of Table 5.9. 
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The exact second-derivative method E04LAF is clearly superior to its quasi- 
Newton counterpart E04KAF. If we compare E04LAF with the exact second- 
derivative version of our new algorithm, we see that the two methods are roughly 
comparable, but with the edge slightly in favor of the new algorithm (the new algo- 
rithm requiring fewer function evaluations on 43 and fewer gradient evaluations on 
44 of the 50 tests carried out, although the differences are not particularly large, as 
both methods are very efficient), especially on the constrained (C) problems. We 
attribute the particularly good performance on the constrained problems, in part, 
to being able to make significant changes in the active set during a single itera- 
tion in our framework. In view of our previous testing, we next compare E04KAF 
with the S.R.1 version of our algorithm. It is generally believed that the B.F.G.S. 
update is the best updating scheme for use with line-search based methods, and 
thus E04KAF should prove a good comparison for the updating versions of the 
new algorithm. As we have already stated, the S.R.1 version of our algorithm is 
our preferred choice when second derivatives are not available. We see that the 
S.R.1 version of the new algorithm performs very favorably against E04KAF, the 
new algorithm requiring fewer function evaluations on 46, and fewer gradient eval- 
uations on 47, of the tests performed with the margin often being relatively high, 
particularly on the constrained (C) problems. Finally, when E04KAF is compared 
with the B.F.G.S. version of the new algorithm, the verdict is still in favor of our 
algorithm, but the difference is not so dramatic. 

6. Discussion. We feel that the results indicate that our framework is a good 
one in which to consider solving problem (1.1), especially in view of the good 
theoretical properties of the methods given in our previous paper (Conn, Gould 
and Toint [3]). Moreover, they indicate that updating schemes which are held in 
good repute for line-search based methods are not necessarily the best within a 
trust-region context. This was rather surprising to us and, as yet, we cannot give 
a complete theoretical justification for the observations. We expect such a theory 
will not be easy to develop but feel that the experimental evidence that trust-region 
algorithms do not behave at all like line-search algorithms may well be an important 
insight. We recommend our algorithm with exact second derivatives, if these are 
available; otherwise, we recommend our algorithm with a (safeguarded) symmetric 
rank-one approximation to these derivatives. 

The issues involved in solving larger problems are more complicated. We would 
not, for instance, imagine storing dense matrices. Our choice of a conjugate gra- 
dient "inner iteration" does not require that we access matrices, but merely that 
we are able to form matrix-vector products the choice of algorithm has always 
had the large-scale case in mind. To this end, we envisage using the partial sep- 
arability of the problem functions (see Griewank and Toint [15]) to allow efficient 
storage and updating of matrices in matrix-vector product form. This approach 
has the further advantage that accurate approximations to the second derivatives 
of the element functions, normally being of low rank, are easier to obtain than for 
assembled matrices. As we have suggested, this is important within our algorithmic 
framework for good performance. Of course, it is essential to use preconditioning 
when attempting to solve such large problems and we are currently experimenting 
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with a number of preconditioners. The theory given in our previous paper (Conn, 
Gould and Toint [3]) has this in mind. 

The final aim of this research is actually to produce effective methods for solving 
general nonlinear programming problems. Our intention here is to solve problems 
of this form by combining the nonlinear constraints, in a suitable fashion, with the 
objective function (for instance, an augmented Lagrangian function) and solving 
the resulting (sequence of) bound constrained minimization problem(s) using the 
methods described in this paper. We anticipate an interesting tradeoff between the 
accuracy required in solving the sequence of bound constrained problems and the 
convergence of the overall method. 

Acknowledgment. The authors would like to thank Bert Buckley, lain Duff, 
Phil Gill, Jorge More, Mike Powell, John Reid and two anonymous referees for their 
helpful comments on a previous version of this paper. 

Appendix. In our tests, we have attempted to solve the following problems. 
For each problem, we give (a) the function f (x), (b) any bounds on the variables 
for the "unconstrained" problem, (c) the starting point x(?) and (d) and (e) the 
optimal solutions x* and xC obtained for the unconstrained and the constrained 
problems. 

1. The Generalized Rosenbrock function (GENROSE) (More, Garbow and Hill- 
strom [19]) 

n 

(a) f(X) = 1 + Z[100(Xi - X2 1)2 + (1 - Xi-1)2]- 
i=2 

(c) x (?) =(1. 2,1, -1.2,1,1,1,il...,1,1). 

(d) *U =(,,,.,) 
(e) xC = (1.1, 1.0775,1.1,1.0972,1.1528, 1.3075,1.7026,2.8987) (n = 8). 

2. The Chained Rosenbrock function (CHAINROSE) (Toint [28]) 
n 

(a) f (x) = 1 + E[4ai (xi - x? 1)2 + (1 - Xi-1)2], 
i=2 

where the constants ai are as given by Toint [28]. 

(c) x(?) =(1-,1..-) 

(d) xu =(,,,.,) 
(e) xC = (1.1, 1.0659,1.1,1.0711,1.1,1.0645,1.1,1.0788,1.1, 

1.0691,1.1,1.0811,1.1,1.0759,1.1,1.0720,1.1,1.0714, 

1.1, 1.0684,1.1,1.0652,1.1,1.1782,1.3881) (n = 25). 

3. The Degenerate Chained Rosenbrock function (DEGENROSE) 
The same as 2 except that 

(b) xi < 1 for all i such that i mod 3 = 0. 

(e) xC = (1.1, 1.0659,1.1,1.0711,1.1,1,1.1,1.0788,1.1,1.0691, 

1.1, 1,1.1,1.0759,1.1,1.0720,1.1,1,1.1,1.0684,1.1, 

1.0652,1.1,1,1.3881) (n = 25). 
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4. The Generalized Singular function (GENSING) (More, Garbow and Hillstrom 

[19]) 

(a) f (x) = E[(Xi + 10X+1)2 + 5(Xi+2 - X,+3)2 + (Xi+i - 2xi+2)4 
iEJ 

+ 10(xi -OXi+3)4], 

where n is a multiple of 4 and J = {1,5,9, .. .,n-3}. 

(c) x(?) = (3, -1,0,1,3, -1,0,1, . ... ,3, -1,0,1). 

(d) x* (01 01 01 . .. I ?). 
(e) x*= (0.1,u,0.1,0.1,...,0.1,u,0.1,0.1), 

where a = -9.8153D - 3 (n = 20). 

5. The Chained Singular function (CHAINSING) 

(a) f (X) = Z[(Xi + 10Xi+1)2 + 5(Xi+2 - Xi+3)2 + (Xi+i - 2Xi+2)4 
iEJ 

+ 10(x -1OXi+3)4], 

where n is a multiple of 4 and J = {1,3,5,. . . ,n - 3}. 

(c) x(0) = (3, -1,0,1,3, -1,0,1, . ... ,3, -1,0,1). 

(d) x= (? (0 ... 0). 
(e) x* = (0.1, a, 0.1,W,0.1,W,0.1, w,0.1, w, 

0.1, w, 0.1, W, 0. 1, W, 0. 1, W, 0.1,0.1), 

where a = -9.8153D - 3 and w = -4.3827D - 3 (n = 20). 

6. The Degenerate Chained Singular function (DEGENSING) 
The same as 5 except that 

(b) xi<0 forallisuchthatimod3=Oandimod4=2 

and xi > 0 for all i such that i mod 3 = 0 and i mod 4 # 2. 

(e) x* = (0.1, a,0.1, w,0.1, w,0.1, w,0.1, w, 

0.1, 0, 0.1, W, 0.1, W, 0.1, W, 0.w1, 0.l1), 

where a = -9.8153D -3 and w = -4.3827D - 3 (n = 20). 

7. The Generalized Wood function (GENWOOD) (see, More, Garbow and Hill- 
strom [19] for the Wood function) 

(a) f(x) = 1 + E[00(x+i % - xi)2 + (1 - xi)2 + 90(xi+3 - 4+2)2 

iEJ 

+ (1 - Xi+2)2 + 1O(x%+1 + xi+3 - 2)2 + O.1(Xi+, Xi+3 ], 

where n is a multiple of 4 and J = {1,5,9,..., n-3}. 

(c) x() = (-3, -1, -3, -1,-2,0,-2,0, ..., -2,0). 
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8. The Chained Wood function (CHAINWOOD) 

(a) f(x) = 1 + Z[100(Xi,+ - X)2 + (1 - x,)2 + 9(x+3 - )2 
iEJ 

+ (1 - Xi+2)+ + O(X+ xi+3-2)2 + O.1(X+i-i)2], 

where n is a multiple of 4 and J = {1,3,5,...,n - 3}. 

(c) x() = (-3,-1,-3,-1,-2,O,-2,,0.. .,-2,0). 

(d) xu 
* 

11,.,) 
(e) x* = (1.1, 1.1751,1.1,1.1734,1.1,1.1736,1.1,1.1716) (n = 8). 

9. A generalization of Hock and Schittkowski's 45th problem (HOSC45) (Hock 
and Schittkowski [17]) 

n 

(a) f(x) = 2- f xi/n!. 
i-1 

(b) 0<xi<i forl<i<n. 

(c) x (?) = (2, 2,2, ... .,2). 

(d) x* =(1, 2,3,...n). 
(e) xc = (2.1,2,4.1,4,6.1,6,.. .). 

10. A generalization of the Broyden Tridiagonal function (BROYDENlA) (see 
More, Garbow and Hillstrom [19] for the Broyden Tridiagonal function) 

n 

(a) f (x) = 1 + E1(3 - 2xi)xi - xi-, - xi+, + 1P, 

where p = 7/3 and x0 = 0n+. = ? 

(c) x(?0) = (-1, -1,-1..-1). 

(d) 4* = (-0.5707, -0.6819, -0.7025, -0.7063, -0.7070, -0.7071, -0.7071, 

- 0.7071, -0.7071, -0.7071, -0.7071, -0.7071, -0.7071, 0.7071, 

- 0.7071,-0.7071,-0.7071,-0.7071,-0.7071, -0.7071, -0.7071, 

- 0.7070,-0.7068, -0.7064, -0.7051, -0.7015, -0.6919, -0.6658, 

- 0.5960, -0.4164) (n = 30). 

(e) xc (-0.4707, -0.5909, -0.6025, -0.6196, -0.6070, -0.6200, -0.6071, 

- 0.6200, -0.6071, -0.6200, -0.6071, -0.6200, -0.6017, -0.6200, 

- 0.6071, -0.6200, -0.6071, -0.6200, -0.6017, -0.6200, -0.6071, 

- 0.6200, -0.6068, -0.6193, -0.6050, -0.6146, -0.5919, -0.5758, 

- 0.4960, -0.3570) (n = 30). 
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11. Another generalization of the Broyden Tridiagonal function (BROYDEN1B) 

The same as 10 except that p = 2 and 

(e) xC = (- 0.4707, -0.5952, -0.6025, -0.6233, -0.6070, -0.6239, -0.6071, 

- 0.6239, -0.6071,-0.6239, -0.6071,-0.6239, -0.6017, -0.6239, 

- 0.6071, -0.6239, -0.6071, -0.6239, -0.6017, -0.6239, -0.6071, 

- 0.6238, -0.6068, -0.6232, -0.6050, -0.6183, -0.5919, -0.5794, 

- 0.4960, -0.3625) (n = 30). 

12. A generalization of the Broyden Banded function (BROYDEN2A) (see More, 
Garbow and Hillstrom [19] for the Broyden Banded function) 

p 

()f(z) =1+ i, X +52)X, + 1 + i, Xj(1 + X.) (a) f )1Z(2+54) ++x31+3 
i=1 iEJi 

where p = 7/3 and Ji = {j: max(1, i-5) < j < min(n, i + 1)}. 

(c) x(?) = (-1, -1,-1..-1). 

(d) x* = (-0.4774,-0.5204,-0.5584,-0.5921,-0.6223,-0.6505,-0.6481, 

- 0.6456, -0.6436, -0.6422, -0.6415, -0.6418,-0.6420,-0.6422, 

- 0.6422, -0.6422, -0.6422, -0.6422, -0.6422, -0.6422, -0.6422, 

- 0.6422, -0.6422, -0.6422, -0.6422, -0.6422, -0.6422, -0.6422, 

- 0.6430, -0.6140) (n = 30). 

(e) xc = (-0.3774, -0.5258, -0.4584, -0.6089, -0.5223, -0.6715, -0.5481, 

- 0.6702, -0.5436, -0.6682,-0.5415, -0.6681, -0.5420,-0.6682, 

- 0.5422, -0.6682, -0.5422, -0.6682, -0.5422, -0.6682, -0.5422, 

- 0.6684, -0.5422, -0.6687, -0.5422, -0.6649, -0.5422,-0.6610, 

- 0.5430, -0.6264) (n = 30). 

13. Another generalization of the Broyden Banded function (BROYDEN2B) 

The same as 12 except that p = 2 and 

(e) xc = (-0.3774, -0.5209, -0.4584, -0.6014, -0.5223, -0.6643, -0.5481, 

- 0.6630, -0.5436, -0.6611, -0.5415, -0.6611, -0.5420, -0.6612, 

- 0.5422, -0.6612, -0.5422, -0.6612, -0.5422, -0.6612, -0.5422, 

- 0.6613, -0.5422, -0.6616, -0.5422, -0.6585, -0.5422, -0.6557, 

- 0.5430,-0.6228) (n = 30). 



TESTING METHODS FOR BOUNDED MINIMIZATION 425 

14. Toint's 7-diagonal generalization of the Broyden Tridiagonal function 
(TOINTBROY) (see Toint [28]) 

n n/2 

(a) f(x) =1+ E 1(3- 2xi)xi - x - xi+ + llp + E lxi + x-+nl2Ip 
i=l i=l1 

where n is even, p = 7/3 and xo = Xn+1 = 0. 

(c) x(?) = (-1, -1, -1, ...,I-1). 

(d) xu = (-0.4114, -0.4729, -0.4732, -0.4673, -0.4633, -0.4614, -0.4608, 

- 0.4614, -0.4630, -0.4657, -0.4700, -0.4761, -0.4838, -0.4914, 

- 0.4939, -0.4808, -0.4681, -0.4607, -0.4574, -0.4560, -0.4554, 

- 0.4546, -0.4532, -0.4506, -0.4459, -0.4374, -0.4221, -0.3938, 

- 0.3405, -0.2340) (n = 30). 

(e) xc= (-0.3114, -0.3802, -0.3732, -0.3780, -0.3632, -0.3712, -0.3608, 

- 0.3713, -0.3630, -0.3758, -0.3700, -0.3867, -0.3838, -0.4029, 

- 0.3939, -0.3919, -0.3681, -0.3706, -0.3574, -0.3658,-0.3554, 

- 0.3643, -0.3532, -0.3601, -0.3459, -0.3469, -0.3221, -0.2973, 

- 0.2405, -0.1811) (n = 30). 

15. A trigonometric function (TRIG) (Nazareth [20]) 

n n2 

(a) f(x)=E n+i-(aijsinXj + b cosxj) 2 
t=1 L j=1 

where aij = 6ij, bij = 1 + i6i3 and 6- = 1 if i = j and 0 otherwise. 

(c) x(?) = (l/n, l/n, l/n, . . ., l/n). 
(d) x* = (1.5708,0.1,0,1.5708,0.1,0,1.5708,0.1,0,1.5708). 

(e) x* = (1.6708,0.1,0.1,1.5708,0.2,0,1.6708,0.1,0.1,1.5708). 

16. Another trigonometric function (TOINTTRIG) (Toint [28]) 

(a) f(x) = 5 aij sin[hixi + 3jxj + 'Yi], 
(i,j)EJ 

where aij = 5[1 + mod(i, 5) + mod (j, 5)], /i = 1 + i/10 and ij = 

(i + j)/10. We selected J = {(i, j): mod (Ii - j1 4) = 0}. 

(c) x(?) =(,,,.,) 

(d) x* = (2.0511,1.7968,1.5817,1.3973,1.2375,1.0976,0.9742,0.8645, 

0.7664,0.6781) (n = 10). 

(e) x* = (2.1511,1.7968,1.6817,1.3973,1.3375,1.0976,1.0742,0.8645, 

0.8664,0.6781) (n = 10). 
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17. A generalization of the Cragg and Levy function (CRAGGLEVY) (see Cragg 
and Levy [4] for the Cragg and Levy function) 

(a) f(x) = Z[(eat-Si+)4 + 1OO(z i- z+2)t 
iEJ 

+ tan4(i+2 - Xi+3) + X8 + (Xi+3-1)2], 

where n is a multiple of 4 and J = {1,5,9,... ,n-3}. 

(c) x(0) = (1,2,2,2,2,2,2,2, ... ,2,2,2,2). 

(d) x* = (0,1 1,1 1............ ,0,1,1,1). 
(e) XC = (0.1, 1.1045, 1.1, 1.0019,...,0.1, 1.1045, 1.1, 1.0019). 

18. A penalty function (PENALTY) 

n n 2 n \2 

(a) f(Z)=1+dZi+ 1u -A1/Zz +y 1-1:ilx- 

For our tests, we selected ,u = 1000. 

(b) -0.01 < xi < 10000 for 1 < i < n. 

(c) x(? = (1, 1,1,..1). 

(d) x* = 100(0.0371,0.3346,0.4718,0.5772,0.6662,0.7446,0.8155,0.8807, 

0.9414,0.9984,1.0524,1.1037,1.1527,1.1997,1.2450) (n = 15). 

(e) XC = 100(0.0381,0.3302,0.4728,0.5732,0.6672,0.7404,0.8165,0.8762, 

0.9424,0.9936,1.0534,1.0986,1.1537,1.1944,1.2460) (n = 15). 

19. An Augmented Lagrangian function for a generalization of Hock and 
Schittkowski's 80th problem (AUGMLAGN) (Hock and Schittkowski [17]) 

(a) f (X) =1+ E [extxt+lx?+2X?+3X+4 

iEJ 

1 
+1L~ 

( EX+-10-1 A) 

+ (Xi+1Xi+2 - 5x,+3X,+4 - )'2) 

+(X3++ X3 +1-3))], 

where n is a multiple of 5 and J = {1, 6,11,. . ., n - 4}. For our tests, we 

selected p = 20, Al = -0.002008, A2 = -0.001900 and A3 = -0.000261 

(which makes f(x) an exact penalty function for Hock and Schittkowski's 

problem). 

(b) - 2.3 < xi :5 2.3 for 1 < i < n. 

(c) x(?) = (-2,2,2, -1, -1, -1, -1,2, -1, -1, .1. , -1, -1,2, -1, -1). 

(d) x* = (-1.7171,1.5957, -1.8273, -0.7636, -3-0.7636,., 

- 1.7171,1.5957, -1.8273, -0.7636, -0.7636). 
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(e) XC = (-1.6171,1.4782, -1.9928, -0.8877, -0.6636, -1.8045,1.6957, 
- 1.6488, -0.6636, -0.8425, -0.7290, -0.8553,2.6161, 

- 1.3343, -0.3363) (n = 15). 

20. A generalization of a function due to A. Brown (BROWNi) (L. C. W. Dixon, 
private communication) 

2 

(a) f () = E(i - 3) + E[(0.001(zx - 3)2 (xi - xi+,) + e20(xixi+1)], 
%EJ iEJ 

where n is a multiple of 2 and J = {1,3,5,. ..,n- 1}. 

Nb - 1 < xi < 4 for 1 < i < n. 
(c) x(?) = (O. - -1, -1, . , O -1). 

(d) x* = (3, 3.1498, 3,3.1498, .. ., 3, 3.1498). 

(e) XC = (3.1,3.2498,3.1,3.2498,.. .,3.1,3.2498). 

21. A generalization of another function due to A. Brown (BROWN3) (L. C. W. 
Dixon, private communication) 

n-1 

(a) f (x) = Z[()(X 1 + 1) + (x? 1)(X2+1)] 

i=1 (c) x(? =+ (-,1 1 ,... 1 ) 

(d) x* (?, ?, ?, ... I,0). 
(e) xc = (0.1,0,0.1,0). 0.1,0). 

22. A discrete boundary value problem (BVP) (More, Garbow and Hillstrom 
[19]) 

n 

(a) f(x) = Z[2xi - xi- xi+ + h2(xi + ih + 1)3/2], 
i=1 

where h = 1/(n + 1) and xo = Xn+1 = 0. 

(b) -0.2n < xi < 0.2n for 1 < i < n. 

(c) X0) = ih(ih-1) for 1 < i < n. 

(d) 4U = 0.1(-0.4317, -0.8158, -1.1449, -1.4097, -1.5991, -1.6988, -1.6909, 

-1.5525, -1.2536, -0.7542) (n = 10), 

U= 0.1(0.2321, -0.4520, -0.6588, -0.8514, -1.0288, -1.1895, -1.3322, 
- 1.4553, -1.5571, -1.6354, -1.6881, -1.7127, -1.7060, -1.6650, 
- 1.5856, -1.4636, -1.2938, -1.0702, -0.7858, -0.4323) (n = 20). 

(e) XC = 0.01(5.6835,8.4100,8.9057,7.8272,5.7611,3.2315,0.7129, 
- 1.3527, -2.5356, -2.3936) (n = 10), 

XC = 0.1(0.7679,1.3625,1.8041,2.1121, 2.3047,2.3990,2.4107, 

2.3542,2.2425,2.0875,1.9000,1.6895,1.4648,1.2337, 

1.0034,0.7805,0.5710,0.3050,0.2142,0.0773) (n = 20). 
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23. The discretization of a variational problem (VAR) (Toint [28]) 
n n 

(a) f(x) = 2 [x (x,-x+,)]Ih + 2Ah [(exl? - exl)/(xi+j -x 
i=1 i=O 

where h = 1/(n + 1) and x0 = Xn+1 = 0. We selected A = -3.4. 

(b) -0.2n < xi < 0.2n for 1 < i < n. 

(c) 4) = 0.lih(1 - i) for 1 < i < n. 

(d) 4 = 0.1(1.4638,2.8383,4.1104,5.2663,6.2918, 7.1729,7.8964, 

8.4505,8.8256,9.0150,9.0150,8.8256,8.4505,7.8964, 

7.1729,6.2918,5.2663,4.1104,2.8383,1.4638) (n = 20), 

X* = (0.6812,1.3452,1.9909,2.6169,3.2220,3.8050,4.3645, 

4.8991,5.4075,5.8883,6.3401,6.7617,7.1517, 7.5089, 

7.8320,8.1200,8.3718,8.5865,8.7633,8.9016,9.0007, 

9.0604,9.0803,9.0604,9.0007,8.9016,8.7633,8.5865, 

8.3718,8.1200,7.8320, 7.5089,7.1517,6.7617,6.3401, 

5.8883,5.4075,4.8991,4.3645,3.8050,3.2220,2.6169, 

1.9909,1.3452,0.6812) (n = 45). 

(e) XC = 0.1(0.2464,0.4253,0.5925,0.7456,0.8826,1.0010,1.0984, 

1.1728,1.2224,1.2459,1.2427,1.2129,1.1573,1.0773, 

0.9747,0.8517,0.7107,0.5540,0.3838,0.1966) (n = 20), 

XC = (0.1681,0.3084,0.4464,0.5820,0.7146,0.8440,0.9697, 

1.0911,1.2077,1.3189,1.4241,1.5227,1.6139,1.6970, 

1.7714,1.8363,1.8912,1.9354,1.9685,1.9902, 2.0001, 

2.0100,2.0080,2.0100,2.0001,1.9902,1.9685,1.9354, 

1.8912,1.8363,1.7714,1.6970,1.6139,1.5227,1.4241, 

1.3189,1.2077,1.0911,0.9697,0.8440,0.7146,0.5820, 

0.4464,0.3084,0.1681) (n = 45). 
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